Analisa Sentimen Pada Twitter Terhadap Kenaikan Tarif Dasar Listrik Dengan Metode Naïve Bayes

Authors

  • Adi Kusuma STT Pelita Bangsa
  • Agung Nugroho Universitas Pelita Bangsa

DOI:

https://doi.org/10.32815/jitika.v15i2.557

Keywords:

Sentimen Analisis, Twitter, Klasifikasi, Naive Bayes

Abstract

Along with the development of internet technology, the use of social media has also mushroomed. The most popular social media is Twitter. Twitter provides services for its users to send and read tweets that have been shared, so people prefer to express their opinions through social media rather than expressing it directly. Public opinion expressed in Twitter social media in the form of perception, both positive and negative. The abundance of public opinion can be used as research material to find information. The utilization of this information requires appropriate analytical techniques so that the information generated can assist many parties in making a decision. To overcome the above problems used the right data mining technique, namely sentiment analysis. Therefore, this research tries to do sentiment analysis to see people's perception of the issue of increasing electricity tariffs on social media Twitter using the Naïve Bayes method by classifying sentiments to be positive, negative, and neutral. From the results of research that has been done, it can be seen that the most negative sentiment is formed in response to the issue of the increase in electricity tariffs.

Keywords: Sentimen Analisis, Twitter, Klasifikasi, Naive Bayes

Downloads

Download data is not yet available.

References

Ernawati, S. (2016). Penerapan Particle Swarm Optimization Untuk Seleksi Fitur Pada Analisis Sentimen Review Perusahaan Penjualan Online Menggunakan Naïve Bayes. J. Evolusi, 4(1), 45-54.
Feldman, R and Sanger, J. 2007. The Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data. Cambridge University Press:NewYork.
Gunawan, B., Sastypratiwi, H., & Pratama, E. E. (2018). Sistem Analisis Sentimen pada Ulasan Produk Menggunakan Metode Naive Bayes. JEPIN (Jurnal Edukasi dan Penelitian Informatika), 4(2), 113-118.
Hadna, Nurrun Muchammad Shiddieqy, Santosa, Paulus Insap dan Winarno, Wing Wahyu.2016. Studi Literatur Tentang Perbandingan Metode Untuk Proses Analisis Sentimen Di Twitter.Seminar Nasional Teknologi Informasi dan Komunikasi 2016 (SENTIKA 2016) Yogyakarta, 18-19 Maret 2016.
Hidayatullah, A. F. (2016). Twitter sebagai media dakwah. Teknoin, 22(1).
Indrayuni, E. (2016). Analisa Sentimen Review Hotel Menggunakan Algoritma Support Vector Machine Berbasis Particle Swarm Optimization. EVOLUSI: Jurnal Sains dan Manajemen, 4(2).
Kumar, Lokesh and Bhatia, Parul Kalra. 2015. Text Minig: Consepts, Process And Application. Journal of Global Research in Computer Science. Volume 4, No. 3, March 2013
Kusrini dan Luthfi, Emha Taufiq. 2010. Algoritma Data Mining.Penerbit Andi:Yogyakarta
Ling, Juen, Kencana, I Putu Eka N dan Oka, Tjokorda Bagus.2014. Analisis Sentimen Menggunakan Metode Naïve Bayes Classifier Dengan Seleksi Fitur Chi Square.E-Jurnal Matematika Vol. 3 (3), Agustus 2014.
Liu, Bing. 2012. Sentiment Analysis and Opinion Mining. Morgan & Claypool Publisher:San Rafael, California
Mardiana, T., Adji, T. B., & Hidayah, I. (2016). Stemming influence on similarity detection of abstract written in Indonesia. Telkomnika, 14(1), 219.
Medhat, Walaa, Hassan, Ahmed, & Korashy, Hoda.2014. Sentiment Analysis Algorithms And Applications: A Survey. Ain Shams Engineering Journal (2014) 5, 1093-1113
Novitasari, D. (2017). Perbandingan Algoritma Stemming Porter dengan Arifin Setiono untuk Menentukan Tingkat Ketepatan Kata Dasar. STRING (Satuan Tulisan Riset dan Inovasi Teknologi), 1(2), 120-129.
Sadida, Rizqon dkk.2017. Perancangan Sistem Analisis Sentimen Masyarakat Pada Sosial Media Dan Portal Berita.Seminar Nasional Teknologi Informasi dan Multimedia 2017 STMIK AMIKOM Yogyakarta, 4 Februari 2017.
Setiawan, R. A., & Setyohadi, D. B. (2017). Analisis Komunikasi sosial media twitter sebagai saluran layanan pelanggan provider internet dan Seluler di Indonesia. Journal of Information Systems Engineering and Business Intelligence, 3(1), 16-25.
Widodo, P., Putra, J. A., Afiadi, S., Arifin, A. Z., & Herumurti, D. (2016). Klasifikasi Kategori Dokumen Berita Berbahasa Indonesia dengan Metode Kategorisasi Multi-Label Berbasis Domain Specific Ontology. Jurnal Ilmiah Teknologi Infomasi Terapan, 2(2).
Younis, Eman M.G .2015. SentimentAnalysis and Text Mining for Social Media Microblogs using Open Source Tools: An Empirical Study.International Journal of Computer Applications (0975 - 8887). Volume 112 - No. 5, February 2015

Published

03-12-2021

How to Cite

Kusuma, A., & Nugroho, A. (2021). Analisa Sentimen Pada Twitter Terhadap Kenaikan Tarif Dasar Listrik Dengan Metode Naïve Bayes. Jurnal Ilmiah Teknologi Informasi Asia, 15(2), 137–146. https://doi.org/10.32815/jitika.v15i2.557