Klasterisasi Tingkat Penjualan pada Startup Panak.id dengan Algoritma K-Means

Authors

  • Sutha Wijaya Harjono STMIK Primakara
  • Nengah Widya Utami STMIK Primakara
  • I Gusti Agung Pramesti Dwi Putri STMIK Primakara

DOI:

https://doi.org/10.32815/jitika.v17i1.888

Keywords:

Data Mining, K-Means, Algoritma, Algoritma K-Means, Klasterisasi, Clustering, STMIK Primakara, KDD, Knowledge Discovery in Databases

Abstract

Sales data processing is one way for companies to support future decision making. One way to process sales data is to cluster with data mining techniques that are present as a company solution to be able to process sales data that is owned by carrying out processes that generate new knowledge. Knowledge obtained from owned data is commonly referred to as Knowledge Discovery in Database (KDD) which consists of steps such as; data selection, data cleaning, pattern search (data mining), and interpretation. In this study, the author will discuss data mining techniques and applications using the K-Means algorithm which is applied in the Python programming language. The research was conducted at the startup company Panak.id by accessing data on sales of processed livestock products for the period July 2021 – July 2022. The results showed that the level of product sales was dominated by products that were in the less-selling category. This shows that of the many types of products offered by Panak.id, there are still many products that are of little interest to the public. From this knowledge, the company can make decisions related to sales strategies and innovations in products that are not in demand with the hope of further increasing sales. In addition, the company can also use this knowledge as a prediction in terms of stock control so that products that are not selling well can be monitored more closely to avoid stock buildup in warehouses.

Downloads

Download data is not yet available.

References

Andrean, R., Fendy, S., & Nugroho, A. (2019). Klasterisasi Pengendalian Persediaan Aki . Journal of Information Technology and Computer Science, 5-12.
BPS. (2016, Mei 20). Jumlah Penduduk dan Laju Pertumbuhan Penduduk Menurut Kabupaten/Kota di Provinsi Jawa Timur, 2010, 2014, dan 2015. Retrieved from Badan Pusat Statistik Provinsi Jawa Timur: http://jatim.bps.go.id
Hasanah, H. (2016). TEKNIK-TEKNIK OBSERVASI. Jurnal at-Taqaddum, 21-46.
Hasanah, M., Defit, S., & Nurcahyo, G. W. (2021). Implementasi Algoritma K-Means untuk Klasterisasi Peserta Olimpiade . Jurnal Sistim Informasi dan Teknologi, 30-35.
Kuncorojati, C. (2021). Perusahaan Indonesia Dinilai Belum Cakap Mengolah Data. (medcom.id) Retrieved from https://www.medcom.id/teknologi/news-teknologi/aNr91RVK-perusahaan-indonesia-dinilai-belum-cakap-mengolah-data
Maulana, S. M., Susilo, H., & Riyadi. (2015). IMPLEMENTASI E-COMMERCE SEBAGAI MEDIA PENJUALAN ONLINE (STUDI KASUS PADA TOKO PASTBRIK KOTA MALANG). Jurnal Administrasi Bisnis, 1-9.
Muliono, R., & Sembiring, Z. (2019). DATA MINING CLUSTERING MENGGUNAKAN ALGORITMA. DATA MINING CLUSTERING MENGGUNAKAN ALGORITMA, 272-279.
Nurdiani, N. (2014). TEKNIK SAMPLING SNOWBALL DALAM PENELITIAN LAPANGAN . ComTech, 1110-1118.
Rahmah, S. A. (2020). KLASTERISASI POLA PENJUALAN PESTISIDA MENGGUNAKAN METODE K-MEANS CLUSTERING (STUDI KASUS DI TOKO JUANDA TANI KECAMATAN HUTABAYU RAJA). Journal of Information Technology Research.
Rohmatullah, A., Rahmalia, D., & Pradana, M. S. (2019). KLASTERISASI DATA PERTANIAN DI KABUPATEN . Jurnal Ilmiah Teknosains, 86-93.
Sari, M., & Asmendri. (2020). Penelitian Kepustakaan (Library Research) dalam Penelitian Pendidikan IPA. Jurnal Penelitian Bidang IPA dan Pendidikan IPA, 41-53.
Sari, R. W., & Hartama, D. (2018). Data Mining: Algoritma K-Means Pada Pengelompokkan Wisata Asing ke Indonesia Menurut Provinsi. Seminar Nasional Sains & Teknologi Informasi, 322-326.
Sasongko, Y. A., & E, A. D. (2020). Big Data Semakin Ngetren, SDM Kompetensi Data Science Dilirik Industri. (KOMPAS.com) Retrieved from https://edukasi.kompas.com/read/2020/12/10/093500371/big-data-semakin-ngetren-sdm-kompetensi-data-science-dilirik-industri
Utami, N. W., & Paramitha, A. I. (2021). PENERAPAN DATA MINING UNTUK MENGETAHUI POLA PEMILIHAN PROGRAM STUDI DI STMIK PRIMAKARA MENGGUNAKAN ALGORITMA K-MEANS CLUSTERING. JUTIK, 456-463.
Zein, S., Yasyifa, L., Ghozi, R., Harahap, E., Badruzzaman, F., & Darmawan, D. (2019). PENGOLAHAN DAN ANALISIS DATA KUANTITATIF . Jurnal Teknologi Pendidikan dan Pembelajaran, 839-845.

Published

23-01-2023

How to Cite

Harjono, S. W., Utami, N. W., & Putri, I. G. A. P. D. (2023). Klasterisasi Tingkat Penjualan pada Startup Panak.id dengan Algoritma K-Means. Jurnal Ilmiah Teknologi Informasi Asia, 17(1), 55–66. https://doi.org/10.32815/jitika.v17i1.888