Pengembangan Model Jaringan Syaraf Tiruan untuk Memprediksi Jumlah Mahasiswa Baru di PTS Surabaya (Studi Kasus Universitas Wijaya Putra)
DOI:
https://doi.org/10.32815/jitika.v12i1.213Kata Kunci:
jaringan syaraf tiruan, prediksi, backpropagation, fungsi basis radialAbstrak
Jaringan Syaraf Tiruan (JST) dan data time series dapat digunakan untuk metode peramalan dengan baik. Jaringan Syaraf Tiruan adalah suatu metode yang prinsip kerjanya diadaptasi dari model matematika pada manusia atau syaraf biologi. Jaringan syaraf dikarakteristikkan oleh; (1) pola koneksi diantara neuron (disebut arsitektur), (2) menentukan bobot dari koneksi (disebut training atau learning), dan (3) fungsi aktifasi. Tujuan penelitian adalah mendapatkan arsitektur jaringan syaraf tiruan yang terbaik, membandingkan dua metode Jaringan Syaraf Tiruan Backpropogation dengan metode Jaringan Syaraf Tiruan Fungsi Basis Radial (RBF). Penelitian ini merupakan penelitian dengan menggunakan data yang sebenarnya (true experimental). Penelitian ini dilaksanakan di Universitas Wijaya Putra Surabaya, dengan memakai data kedua yang diperoleh dari tahun 2012 sampai dengan 2016. Hasil penelitian menunjukkan adanya perbedaan antara metode JST RBF dengan metode JST Backpropagation, diperoleh indeks statistik JST RBF, MAE= 0,0074, RMSE=0, 0096, error=12,6532 %. Indeks statistik JST Backpropagation, MAE= 0,2129, RMSE=0, 2752, error=13,3217 %.
Unduhan
Referensi
Han, J., Kamber,M., dan Pei, J. (2012), Data Mining Concepts and Techniques, Morgan Kaufmann Publishers, Waltham.
Huang, W., Foo, S. (2002). Neural network modeling of salinity variation in Apalachicola River. Water Research, 36, 356–362.
Irawan, M.I., Syaharuddin, Utomo, D.B., dan Mustikarukmi, A. (2013). Intelligent Irrigation Water Requirement System Based on Artificial Neural Networks and Profit Optimization for Planting Time Decision Making of Crops in Lombok Islands. Journal of Theoretical and Applied Information Technology, 58(3), 657-671.
Kurt, A., Oktay. A. B. (2010). Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks. Expert Systems with Applications, 37, 7986-7992. doi:10.1016/j.eswa.2010.05.093.
Ye, S. (2012). RMB Exchange Rate Forecast Approach Based on BP Neural Network. Physics Procedia, 33, 287 – 293. doi:10.1016/j.phpro.2012.05.064.
Wang, Y., Niu, D., Ji, L. (2012). Short-term power load forecasting based on IVL-BP neural network technology. Systems Engineering Procedia, 4, 168 – 174. doi:10.1016/j.sepro.2011.11.062.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Penulis mengirimkan naskah dan pengertian bahwa jika diterima untuk proses dipublikasi, hak cipta dari artikel tersebut akan diberikan kepada jurnal ilmiah teknologi informasi asia. Jurnal ilmiah teknologi informasi asia dan Lp2m Stmik Asia Malang sebagai penerbit jurnal, komponen Hak cipta mencakup hak untuk mereproduksi dan mengirimkan artikel dalam semua bentuk dan media, termasuk cetak ulang, foto, mikrofilm, dan reproduksi serupa lainnya, serta terjemahannya.
Jurnal ilmiah teknologi infomasi asia, dan Lp2m ITB Asia Malang, beserta jajaran para redaksi berusaha keras untuk memastikan bahwa tidak ada data, opini, pernyataan yang salah atau menyesatkan ketika dipublikasikan di jurnal, dengan kondisi apapun, isi artikel dan iklan yang diterbitkan di Jurnal ilmiah teknologi infomasi asia adalah murni merupakan tanggung jawab masing-masing penulis dan pengiklan. Pengguna situs web ini akan dilisensikan dengan menggunakan materi dari situs web ini setelah Lisensi Internasional Creative Commons Attribution 4.0. Tidak ada biaya yang dibebankan. Silakan gunakan materi yang sesuai.
Anda bebas untuk:
Bagikan - salin dan sebarkan materi dalam media atau format apa pun
Adaptasi - remix, transformasikan, dan bangun berdasarkan materi untuk tujuan apa pun, bahkan secara komersial.
Pemberi lisensi tidak dapat mencabut kebebasan ini selama Anda mengikuti ketentuan lisensi