Penerapan Fitur Warna dan Tekstur untuk Identifikasi Kerusakan Mutu Biji Kopi Arabika (Coffea Arabica) di Kabupaten Bondowoso
DOI:
https://doi.org/10.32815/jitika.v15i2.593Kata Kunci:
kerusakan mutu, biji kopi arabika, warna, GLCM, BackpropagasiAbstrak
Tanaman perkebunan yang juga menjadi sumber devisa negara Indonesia adalah kopi. Hanya dua jenis kopi yang bernilai ekonomis untuk dibudidayakan yaitu kopi arabika dan kopi robusta. Bondowoso merupakan kabupaten di Jawa Timur yang mengembangkan kopi arabika. Permasalahannya adalah petani masih menggunakan pengamatan langsung (manual) pada masing-masing biji kopi untuk menentukan kualitas biji kopi sehingga penelitian ini diharapkan mampu membantu petani dalam sortasi kerusakan mutu biji kopi berdasarkan warna dan teksturnya. Fitur yang digunakan yaitu fitur warna dan fitur tekstur GLCM pada sudut 0̊ dan 45̊. Jumlah data keseluruhan adalah 198. Metode Backpropagasi mampu mengklasifikasi kerusakan mutu pada biji kopi arabika dengan tingkat akurasi training sebesar 100% dan tingkat akurasi testing sebesar 97.5% pada variasi learning rate yaitu 0.5.
Unduhan
Referensi
Effendi, M., Fatasya, U., & Effendi, U. (2017). Identifikasi Jenis dan Mutu Kopi Menggunakan Pengolahan Citra Digital dengan Metode Jaringan Syaraf Tiruan. Jurnal Ilmiah Teknologi Pertanian AGROTECHNO, 2(1), 140–146.
Ega Ash Yokawati, Y., & Wachjar, A. (2019). Pengelolaan Panen dan Pascapanen Kopi Arabika (Coffea arabica L.) di Kebun Kalisat Jampit, Bondowoso, Jawa Timur. Buletin Agrohorti, 7(3), 343–350. https://doi.org/10.29244/agrob.v7i3.30471
Fitri, Z. E., Nuhanatika, U., Madjid, A., & Imron, A. M. N. (2020). Penentuan Tingkat Kematangan Cabe Rawit (Capsicum frutescens L.) Berdasarkan Gray Level Co-Occurrence Matrix. Jurnal Teknologi Informasi dan Terapan, 7(1), 1–5. https://doi.org/10.25047/jtit.v7i1.121
Fitri, Z. E., Rizkiyah, R., Madjid, A., & Imron, A. M. N. (2020). Penerapan Neural Network untuk Klasifkasi Kerusakan Mutu Tomat. Jurnal Rekayasa Elektrika, 16(1), 44–49. https://doi.org/10.17529/jre.v16i1.15535
Ikhsan, D., Utami, E., & Wibowo, F. W. (2020). Metode Klasifikasi Mutu Greenbean Kopi Arabika Lanang Dan Biasa Menggunakan K-Nearest Neighbor Berdasarkan Bentuk. Jurnal Ilmiah SINUS, 18(2), 1. https://doi.org/10.30646/sinus.v18i2.456
Nanda Imron, A. M., & Fitri, Z. E. (2019). A Classification of Platelets in Peripheral Blood Smear Image as an Early Detection of Myeloproliferative Syndrome Using Gray Level Co-Occurence Matrix. Journal of Physics: Conference Series, 1201(1). https://doi.org/10.1088/1742-6596/1201/1/012049
Nasution, T. H., & Andayani, U. (2017). Recognition of Roasted Coffee Bean Levels using Image Processing and Neural Network. Journal of Physics: Conference Series, 180(1), 1–8. https://doi.org/10.1088/1742-6596/755/1/011001
Pizzaia, J. P. L., Salcides, I. R., Almeida, G. M. De, Contarato, R., & Almeida, R. De. (2019). Arabica coffee samples classification using a Multilayer Perceptron neural network. 2018 13th IEEE International Conference on Industry Applications, INDUSCON 2018 - Proceedings, December 2019, 80–84. https://doi.org/10.1109/INDUSCON.2018.8627271
Rahardjo, P. (2012). Kopi: Panduan Budi Daya dan Pengolahan Kopi Arabika dan Robusta (1 ed.). Penebar Swadaya.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Penulis mengirimkan naskah dan pengertian bahwa jika diterima untuk proses dipublikasi, hak cipta dari artikel tersebut akan diberikan kepada jurnal ilmiah teknologi informasi asia. Jurnal ilmiah teknologi informasi asia dan Lp2m Stmik Asia Malang sebagai penerbit jurnal, komponen Hak cipta mencakup hak untuk mereproduksi dan mengirimkan artikel dalam semua bentuk dan media, termasuk cetak ulang, foto, mikrofilm, dan reproduksi serupa lainnya, serta terjemahannya.
Jurnal ilmiah teknologi infomasi asia, dan Lp2m ITB Asia Malang, beserta jajaran para redaksi berusaha keras untuk memastikan bahwa tidak ada data, opini, pernyataan yang salah atau menyesatkan ketika dipublikasikan di jurnal, dengan kondisi apapun, isi artikel dan iklan yang diterbitkan di Jurnal ilmiah teknologi infomasi asia adalah murni merupakan tanggung jawab masing-masing penulis dan pengiklan. Pengguna situs web ini akan dilisensikan dengan menggunakan materi dari situs web ini setelah Lisensi Internasional Creative Commons Attribution 4.0. Tidak ada biaya yang dibebankan. Silakan gunakan materi yang sesuai.
Anda bebas untuk:
Bagikan - salin dan sebarkan materi dalam media atau format apa pun
Adaptasi - remix, transformasikan, dan bangun berdasarkan materi untuk tujuan apa pun, bahkan secara komersial.
Pemberi lisensi tidak dapat mencabut kebebasan ini selama Anda mengikuti ketentuan lisensi