Penerapan Data Mining Untuk Clustering Penilaian Kinerja Dosen Menggunakan Algoritma K-Means (Studi Kasus: STMIK Primakara)

Authors

  • Ni Luh Putu Purnama Dewi Program Studi Sistem Informasi STMIK Primakara
  • I Nyoman Purnama Program Studi Sistem Informasi STMIK Primakara
  • Nengah Widya Utami Program Studi Sistem Informasi Akuntansi STMIK Primakara

DOI:

https://doi.org/10.32815/jitika.v16i2.761

Keywords:

Penilaian Kinerja dosen, KDD, Data mining clustering, K-Means, DBI

Abstract

ABSTRACT. Lecturer performance appraisal is a process in evaluating lecturer performance and lecturer work output. This research was conducted to classify the performance of lecturers by utilizing data mining techniques. This study aims to facilitate the provision of information and evaluation to lecturers and as a decision-making material. The research method used is the Knowledge Discovery in Database (KDD) method, which consists of the following stages: Data Selection, Preprocessing/Cleaning, Data Transformation, Data mining, and Enterpretation/Evaluation. The application of the method used in this study is the K-Means Clustering algorithm. The steps taken in analyzing and classifying performance start with several centroid values ​​from a random center point. The K-Means algorithm process ends if there is no change in the centroid value between one iteration and another. The test was carried out using the RapidMiner Studio 9.10 application and using the Davies-Bouldin Index (DBI) evaluation with 983 data input data, so that the results of the lecturer performance assessment were based on student satisfaction, namely very good cluster 312 (31.74%) student data, good cluster 401 (40.79%) student data, cluster data is quite good 189 (19.23%) student data, and cluster data is not good 81 (8.24%) student data. And the DBI result is 0.270 or 27%, so the accuracy of the cluster results is good, because the DBI value is close to zero.

Keywords: Lecturer performance assessment, KDD, Data mining Clustering, K-Means, DBI

Downloads

Download data is not yet available.

References

Nurzahputra, Aldi, Much Aziz Muslim, and Miranita Khusniati. 2017. “Penerapan Algoritma K-Means Untuk Clustering Penilaian Dosen Berdasarkan Indeks Kepuasan Mahasiswa.” Techno.Com 16(1):17–24. doi: 10.33633/tc.v16i1.1284.
Parlambang, Bagas, and Fauziah. 2020. “Implementasi Algoritma K-Means Dalam Proses Penilaian Kuesioner Kepada Dosen Guna Mendukung Kepuasan Mahasiswa Terhadap Dosen.” Jurnal Ilmiah Teknologi Dan Rekayasa 25(2):161–73. doi: 10.35760/tr.2020.v25i2.2719.
Puspita, Mita, I. Wyn Rinda, and I. Wyn Darsana. 2014. “Kinerja Terhadap Hasil Belajar Ipa Siswa Kelas V Pada Gugus 7 Kecamatan Penebel Kabupaten Tabanan.” Mimbar PGSD Universitas Pendidikan Ganesha Jurusan PGSD (Vol: 2 No: 1 Tahun 2014) 2.
Toyib, Rozali, and Surya Ade Saputera. 2019. “Aplikasi Sistem Penilaian Kinerja Guru Dengan Metode Decision Tree Menggunakan Algoritma ID3 ( Studi Kasus SLTP Negeri 3 Marga Sakti Bengkulu Utara ).” JTIS, Volume 2 Nomor 1, Februari 2019 ISSN : 2614 – 3070, E-ISSN : 2614 – 3089 2:1–7.
Virgo, Ismail, Sarjon Defit, and Yuhandri Yunus. 2020. “Klasterisasi Tingkat Kehadiran Dosen Menggunakan Algoritma K-Means Clustering (Studi Kasus Institut Agama Islam Batusangkar).” Jurnal Sistim Informasi Dan Teknologi 2(1):24–29. doi: 10.37034/jsisfotek.v2i1.22.
Wafa, Moh. Shohibul. 2013. “Evaluasi Kinerja Akademik Mahasiswa Menggunakan Algoritma K-Means Clustering.” Universitas Islam Negeri Maulana Malik Ibrahim Malang 1:1–117.

Published

14-07-2022

How to Cite

Dewi, N. L. P. P., Purnama, I. N., & Utami, N. W. (2022). Penerapan Data Mining Untuk Clustering Penilaian Kinerja Dosen Menggunakan Algoritma K-Means (Studi Kasus: STMIK Primakara). Jurnal Ilmiah Teknologi Informasi Asia, 16(2), 105–112. https://doi.org/10.32815/jitika.v16i2.761