Extracting Customer Reviews of Restaurants to Explore Service Aspects on Google Review and Tripadvisor as Factors for Quality Improvement

Authors

  • Dwija Wisnu Brata FILKOM Universitas Brawijaya
  • Welly Purnomo FILKOM Universitas Brawijaya
  • Achmad Nofandi FILKOM Universitas Brawijaya

DOI:

https://doi.org/10.32815/jitika.v18i1.1001

Abstract

Customer reviews are views and comments given by customers after they experience a product or service. Customer reviews can be a valuable source of information for owners, but there are certain problems related to reviews piling up and not having time to read the meaning of the contents of the reviews, as well as paying attention to what aspects are highlighted by customers. The research was conducted using deep learning, data collection using web scrapping techniques with the Python-based Selenium tool, data obtained for 2065 reviews consisting of 1955 Google review data and 110 TripAdvisor data. The aspects discussed are service quality, food quality, environment and price using the Artificial Neural Network (ANN) algorithm with word weighting using TF-IDF. Implementation of dataset imbalance, random undersampling technique applied. Hyperparameter tuning was done via the GridsearchCV function from the scikit-learn library. The model testing results were evaluated using a confusion matrix, producing an accuracy value of 89%. Next, a negative review ranking process was carried out to identify the negative reviews most frequently given by customers and the aspects that accompany them.

Downloads

Download data is not yet available.

References

Arsi, P., & Waluyo, R. (2021). Analisis Sentimen Wacana Pemindahan Ibu Kota Indonesia Menggunakan Algoritma Support Vector Machine (SVM). Jurnal Teknologi Informasi Dan Ilmu Komputer, 8(1), 147. https://doi.org/10.25126/jtiik.0813944.

Ching, M. R. D., & De Dios Bulos, R. (2019). Improving Restaurants’ Business Performance Using Yelp Data Sets through Sentiment Analysis. Proceedings of the 2019 3rd International Conference on E-Commerce, E-Business and E-Government - ICEEG 2019. https://doi.org/10.1145/3340017.3340018.

Dang, N. C., Moreno, M. N., & De La Prieta, F. (2020). Sentiment Analysis Based on Deep Learning: A Comparative Study. Electronics, 9(3), 483. https://doi.org/10.3390/electronics9030483.

Djufri, M. (2020). PENERAPAN TEKNIK WEB SCRAPING UNTUK PENGGALIAN POTENSI PAJAK (Studi Kasus pada Online Market Place Tokopedia, Shopee dan Bukalapak) (Vol. 13).

Gifari, O. I., Adha, M., Rifky Hendrawan, I., Freddy, F., & Durrand, S. (2022). Analisis Sentimen Review Film Menggunakan TF-IDF dan Support Vector Machine. JIFOTECH (JOURNAL OF INFORMATION TECHNOLOGY, 2(1).

Gunawan, D., Riana, D., Ardiansyah, D., Akbar, F., & Alfarizi, S. (2020). Komparasi Algoritma Support Vector Machine Dan Naïve Bayes Dengan Algotima Genetika Pada Analisis Sentimen Calon Gubernur Jabar 2018-2023. Jurnal Teknik Komputer AMIK BSI. https://doi.org/10.31294/jtk.v6i1.6866.

Imady, P. Al, Setianingsih, C., & Ruriawan, M. F. (2023). Deteksi Threat Dan Vulnerability Pada Unggahan Twitter Menggunakan Algoritma Naïve Bayes. E-Proceeding of Engineering, 10(1), 304–312.

Liliani, P. (2020). Analisis Pengaruh Kualitas Makanan Dan Kualitas Pelayanan Terhadap kepuasan pelanggan Dan Dampaknya Pada behavioral intention restoran top Yammie. Jurnal Bina Manajemen, 8(2), 18–48. https://doi.org/10.52859/jbm.v8i2.85

Maisat, Z., Darmawan, E., & Fauzan Dianta, A. (2023). Implementasi Optimasi Hyperparameter GridSearchCV Pada Sistem Prediksi Serangan Jantung Menggunakan SVM. Jurnal Ilmiah Sistem Informasi Unipdu, 13(1), 8–15. https://doi.org/10.26594/teknologi.v13i1.3098

Normawati, D., & Prayogi, S. A. (2021). Implementasi Naïve Bayes Classifier Dan Confusion Matrix Pada Analisis Sentimen Berbasis Teks Pada Twitter. In Jurnal Sains Komputer & Informatika (J-SAKTI (Vol. 5, Issue 2).

Nugraha, A. E., Rizal, S., & Pratiwi, N. K. C. (2022). Klasifikasi Penyakit Pada Tanaman Singkong Menggunakan Arsitektur VGGNET Berbasis Deep Learning.

Pamungkas, F., & Kharisudin, I. (2021). Analisis Sentimen dengan SVM, NAIVE BAYES dan KNN untuk Studi Tanggapan Masyarakat Indonesia Terhadap Pandemi Covid-19 pada Media Sosial Twitter. PRISMA, Prosiding Seminar Nasional Matematika, 4, 628-634

Samsir, Wiguna, C., Verawardina, U., Edi, F., & Watrianthos, R. (2021). Analisis Sentimen Pembelajaran Daring Pada Twitter di Masa Pandemi COVID-19Menggunakan Metode Naïve Bayes. JURNAL MEDIA INFORMATIKA BUDIDARMA, 5(1), 157–163. https://doi.org/10.30865/mib.v5i1.2604

Saputra, C. B., Muzakir, A., & Udariansyah, D. (2020). ANALISIS SENTIMEN MASYARAKAT TERHADAP #2019GANTIPRESIDEN BERDASARKAN OPINI DARI TWITTER MENGGUNAKAN METODE NAIVE BAYES CLASSIFIER. Bina Darma Conference on Computer Science.

Sarker, I. H. (2021). Machine Learning: Algorithms, Real-World Applications and Research Directions. SN Computer Science, 2(3), 160. https://doi.org/10.1007/s42979-021-00592-x

Sartini. (2020). ANALISIS SENTIMEN TWITTER BAHASA INDONESIA MENGGUNAKAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK.

Satriajati, S., Bagus Panuntun, S., & Pramana, S. (2020). IMPLEMENTASI WEB SCRAPING DALAM PENGUMPULAN BERITA KRIMINAL PADA MASA PANDEMI COVID-19 Studi Kasus: Situs Berita detik.com.

Setiawan, A., Santoso, L. W., & Adipranata, R. (2020). Klasifikasi Artikel Berita Bahasa Indonesia Dengan Naive Bayes Classifier.

Suthaharan, S. (2016). Support Vector Machine (pp. 207–235). https://doi.org/10.1007/978-1-4899-7641-3_9.

Published

16-03-2024

How to Cite

Brata, D. W., Purnomo, W., & Nofandi, A. (2024). Extracting Customer Reviews of Restaurants to Explore Service Aspects on Google Review and Tripadvisor as Factors for Quality Improvement. Jurnal Ilmiah Teknologi Informasi Asia, 18(1), 33–47. https://doi.org/10.32815/jitika.v18i1.1001